
The Fourier-series method for calculating strain distributions in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 4509

(http://iopscience.iop.org/0953-8984/9/22/004)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 08:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/22
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 4509–4520. Printed in the UK PII: S0953-8984(97)79048-9

The Fourier-series method for calculating strain
distributions in two dimensions

J R Downes and D A Faux
Physics Department, University of Surrey, Guildford, Surrey, GU2 5XH, UK

Received 30 October 1996, in final form 13 March 1997

Abstract. The Fourier-series method for calculating strain distributions within a rectangular
isotropic elastic block is extended to allow boundary conditions which may include normal
or shear stress components. The method is then further extended to include boundary
conditions expressed as displacements allowing, in principle, the evaluation of strain fields
in device structures with more complex geometries. This extension provides an alternative
strain evaluation technique for two-dimensional structures which can be described as a system
of linked rectangular elastic blocks. The method is illustrated by calculating the strain field for
a transmission electron microscopy sample in which a strained layer meets the free surfaces at
an angle of 45◦.

1. Introduction

The presence of strain and the relaxation of strain have a number of interesting and well
documented effects on the electronic and mechanical properties of semiconductor structures
and have promoted significant interest in the calculation of strain fields in a broad range
of semiconductor device structures [1]. For instance, knowledge of the strain fields in
quantum wells are required because strain leads to modifications of the band structure and
may induce piezoelectricity in certain devices. The determination of strain relaxation in
strained quantum wires is a necessary precursor to calculations of their electronic properties
[2–4]. Calculation of strain fields enables an assessment to be made of possible mechanical
problems in devices. For example, strains caused during bonding to heat sinks can lead
to early degradation of lasers [5]. Strain calculations also form an integral part of some
experimental techniques. The measurement of strain in semiconductor devices by, for
example, examining contrast patterns obtained by transmission electron microscopy (TEM)
requires a theoretical determination of the strain fields near the edge of such structures to
enable proper interpretation of the images [6–8].

Calculations of strain distributions in strained-layer semiconductor structures first
appeared in the late 1970s, at the time the first high-quality strained layers were grown.
Finite-element analysis, developed for the engineering world, has been applied by several
groups [3, 4, 9, 10]. One significant advantage of finite-element analysis is that it can be
used to treat problems with complex geometries. Unfortunately, this advantage is offset
because many strained-layer or strained quantum-wire structures are long and thin with
high aspect ratios and the subsequent demands on computing resources (principally large
memory requirements) make certain calculations difficult. In some cases, the boundary-
element method would be the preferred strain evaluation technique because the boundary
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Figure 1. An elastic block subjected to normal and tangential tractions on all four sides.

of the structure instead of its volume is discretized, but this advantage comes at the cost of
increased mathematical complexity [11]. Commercial packages are not yet widely available
which means the complex mathematics must be performed by the individual.

In this environment many authors have presented analytic methods of calculating strain
fields for particular structures [12–30]. Usually the focus is on one aspect of the strain
field. For example, several authors have studied the bending moments in stacks of strained
layers, but have ignored the relaxation at the ends of the layers. Also, calculations which
are not rigorously correct have been presented. For example, the concentrated-point-force
model, and the subsequent distributed-force model of Hu [24, 25] for calculating the stress
distributions at the edge of a strained film are approximations and the stress fields presented
do not obey the equilibrium conditions of linear elasticity. Analytic results are nevertheless
useful because they allow quick calculations of strain components at any point and may
yield simple functional forms in certain limits.

The Fourier-series method, on which the present paper focuses, has all the advantages
of analytic methods and the ability to treat high-aspect-ratio structures, although the theory
is currently restricted to isotropic materials. The analysis presented by Faux and Haigh [15]
in 1990 developed from the work of Pickett [31] and Timoshenko and Goodier [32] but
only permitted normal stress components to be specified on the top and bottom surfaces
of an infinite layer. In 1994, Faux [16] extended the analysis to allow normal stress
components on the left and right surfaces as well as the top and bottom surfaces of a
finite rectangular block. Faux and Gill [17] subsequently presented a three-dimensional
analysis for symmetrical normal stress components on a cuboid. The analysis presented
here extends this earlier work and allows boundary conditions of shear and normal forces
on all boundaries to be specified.

The generalization of the Fourier-series method to include tangential surface forces is
presented in section 2. An extension of the theory to treat a system of connected blocks is
discussed in section 3. Results for the strain distribution of a TEM sample are presented in
section 4 and conclusions follow in section 5.
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2. Theory

The Airy stress function [32]φ for isotropic materials in two dimensions must satisfy the
differential equation

∇4φ = ∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+ ∂

4φ

∂y4
= 0 (1)

and the stress components are then obtained fromφ using

σxx = ∂2φ

∂y2
σyy = ∂2φ

∂x2
and σxy = − ∂2φ

∂x∂y
. (2)

The Fourier-series method [15–17] relies on choosing an Airy stress function which
gives stresses at the boundaries of a rectangular block in the form of a Fourier series.
Choice of the stress function is the most important aspect of the method and in its most
general form, for the two-dimensional rectangular block shown in figure 1, the stress function
should be

φ(x, y) = 1

2
σXXy

2+ 1

2
σYY x

2− σXY xy +
∞∑
i=1

A±i cosαixh
±
i (y)+ B±i sinα′ixh

′±
i (y)

−
∞∑
i=1

C±i sinαixi
±
i (y)−D±i cosα′ixi

′±
i (y)

+
∞∑
i=1

E±i cosβiyj
±
i (x)+ F±i sinβ ′iyj

′±
i (x)

−
∞∑
i=1

G±i sinβiyk
±
i (x)−H±i cosβ ′iyk

′±
i (x) (3)

whereαi , α′i , βi andβ ′i are Fourier frequencies andAi , Bi , Ci , Di , Ei , Fi , Gi andHi are
constants which will be referred to as the Fourier coefficients of the stress function. The
functionshi(y), ii(y), ji(x), ki(x), h′i (y), etc will be referred to as fitting functions. The
functionsh+i (y) and h

′+
i (y) are different functions, each being associated with either the

cosine or sine terms of the Fourier series. Differentials will be distinguished by primes
appearing after the ‘±’ superscripts. The superscript ‘±’ indicates that each line represents
two sums, one where the constants and functions have positive superscripts and one where
they have negative superscripts. These refer to terms which can be associated with the
upper and lower, or left and right, surfaces of the block, respectively. On differentiation,
the first three terms,σXX, σYY andσXY , become the zeroth-order term of the Fourier series
for the three stressesσxx , σyy andσxy . Note that the unusual ordering of the trigonometric
functions in the four sums means that the usual ordering is obtained when equations (2) are
used to obtain the stresses by differentiation.

Faux and Haigh [15] only included the first sum of the stress function (that involving the
coefficientsA andB) and so included only normal forces on the top and bottom surfaces of
an infinite layer. Faux [16] extended the analysis to include the third sum (involving theE

andF coefficients) which allowed normal forces on the left and right surfaces as well as the
top and bottom surfaces of a finite rectangular block. The following analysis includes all
terms of equation (3) allowing boundary conditions specifying shear stress to be included.
The choice of the Fourier frequencies and the fitting functions will determine the detail of
the mathematics, but in all cases a set of Fourier coefficients of the stress function which
yield stresses satisfying the specified boundary conditions is required.
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The stress function must be a solution of equation (1) and, by substitution, the following
form for the fitting functionsh±i (y) can be deduced:

h±i (y) = h±C1i coshαiy + h±C2i sinhαiy + h±C3iy coshαiy + h±C4iy sinhαiy (4)

where h±C1i , h±C2i , h±C3i , h±C4i are arbitrary constants. Similar expressions fori±i (y), j
±
i (y)

andk±i (y), and the primed functions can be found. The four arbitrary constants of the eight
sets of fitting functions can be chosen to simplify the mathematics.

The stress obtained from the stress function using equation (2) must equal the specified
stress components at each boundary. For example,σxx(x, y) is given by

σxx(x, y) = σXX +
∞∑
i=1

A±i cosαixh
±′′
i (y)+ B±i sinα′ixh

′±′′
i (y)

−
∞∑
i=1

C±i sinαixi
±′′
i (y)−D±i cosα′ixi

′±′′
i (y)

−
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i=1

E±i β
2
i cosβiyj

±
i (x)+ F±i β

′2
i sinβ ′iyj

′±
i (x)

+
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i=1

G±i β
2
i sinβiyk

±
i (x)−H±i β

′2
i cosβ ′iyk

′±
i (x) (5)

and by settingx = +l the normal stress at the right-hand surface of the elastic block can
be obtained:

σxx(l, y) = σXX +
∞∑
i=1

A±i cosαilh
±′′
i (y)+ B±i sinα′i lh

′±′′
i (y)

−
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i=1

C±i sinαili
±′′
i (y)−D±i cosα′i li

′±′′
i (y)

−
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i=1

E±i β
2
i cosβiyj

±
i (l)+ F±i β

′2
i sinβ ′iyj

′±
i (l)

+
∞∑
i=1

G±i β
2
i sinβiyk

±
i (l)−H±i β

′2
i cosβ ′iyk

′±
i (l). (6)

This stress can be set equal to the boundary stress, which gives an equation relating all
of the unknown Fourier coefficients of the stress function to the known Fourier coefficients
of the normal stress imposed on the right-hand surface. For example, suppose the boundary
condition for the normal stress on the right-hand surface, when expressed as a Fourier series,
is

σxx(l, y) = σXX +
∞∑
i=1

W+i cosβiy +X+i sinβiy. (7)

Multiplying equations (6) and (7) by cosβiy and integrating with respect toy from −c to
+c, enables terms of equal frequency to be equated. The following relationship then holds
for theW+r ,
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W+r c =
∞∑
i=1

A±i cosαil
∫ +c
−c

h±
′′

i (y) cosβr dy + B±i sinα′i l
∫ +c
−c

h
′±′′
i (y) cosβr dy

−
∞∑
i=1

C±i sinαil
∫ +c
−c

i±
′′

i (y) cosβr dy −D±i cosα′i l
∫ +c
−c

i
′±′′
i (y) cosβr dy

−{E±r β2
r j
±
r (l)−G±r β2

r k
±
r (l)}c (8)

where the subscriptsi and r are integers.W+r is the rth cosine Fourier coefficient of the
normal stress onx = +l andA±i , B±i , C±i , D±i , E±r andG±r are Fourier coefficients of the
stress function.

It is possible to derive a total of 16 sets of equations of this type, involving each of
the 16 Fourier coefficients of the boundary conditions,A±i , B±i , C±i , etc. If the summation
over i is truncated, then equation (8) represents a large but finite number of simultaneous
equations which can be solved by iterative techniques for the Fourier coefficients of the
stress function.

A sensible choice of the Fourier frequencies and the fitting functions can simplify
equations (8). This is illustrated by considering the shear stress. The shear stress is obtained
from the stress function using equation (2),

σxy(x, y) = σXY +
∞∑
i=1

αiA
±
i sinαixh

±′
i (y)− α′iB±i cosα′ixh

′±′
i (y)

−
∞∑
i=1

αiC
±
i cosαixi

±′
i (y)+ α′iD±i sinα′ixi

′±′
i (y)

+
∞∑
i=1

βiE
±
i sinβiyj

±′
i (x)− β ′iF±i cosβ ′iyj

′±′
i (x)

−
∞∑
i=1

βiG
±
i cosβiyk

±′
i (x)+ β ′iH±i sinβ ′iyk

′±′
i (x). (9)

Table 1. Fourier frequencies that form basis sets.

αi βi α′i β ′i

(1) iπ/l iπ/c iπ/l iπ/c

(2) iπ/l iπ/c
(
i − 1

2

)
π/l

(
i − 1

2

)
π/c

(3)
(
i − 1

2

)
π/l

(
i − 1

2

)
π/c iπ/l iπ/c

The Fourier frequencies must be chosen such that the trigonometric functions form a
basis set, which allows at least the combinations shown in table 1. It was noted in an
earlier work [16] that choosing the set of frequencies labelled (2) in table 1 produces an
expression for the shear stress which involves no contribution from the first and third sums
of the stress function. This, together with settingC±i , D±i , G±i andH±i equal to zero, gives
a stress function in which the shear stress is zero at all four surfaces—a useful result if this
is one of the boundary conditions. In the present case, the set of frequencies labelled (2)
in table 1 are used andG±i andH±i are retained. If we now choose the fitting functions as
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follows,

i±
′

i (+l) = k−
′

i (+l) = 0 k+
′

i (+l) = −
1

βi

i
′±′
i (+l) = k′−′i (+l) = 0 and k

′+′
i (+l) = − 1

βi

then the shear stress at the boundaryx = +l reduces to the following form:

σxy(+l, y) = σXY +
∞∑
i=1

G+i cosβiy +H+i sinβ ′iy. (10)

This choice of frequencies and fitting functions means that the coefficients of the stress
function, G±i andH±i , are equal simply to the corresponding Fourier coefficients of the
specified shear stress at the boundaryx = +l. The G±i andH±i are, therefore, found
immediately.

Equation (8) for the normal stresses can be reduced in a similar manner by a suitable
choice of frequencies and fitting functions, but the reduction in this case is not so complete.
Keeping to the frequencies chosen above and setting

j+i (+l) = −
1

β2
i

j−i (+l) = 0 and k±i (+l) = 0

equation (8) reduces to

W+r c = E+r c +
∞∑
i=0

(−1)i
{
A±i

∫ +c
−c

h±
′′

i (y) cosβiy dy − B±i
∫ +c
−c

h
′±′′
i (y) cosβiy dy

}
. (11)

This time the Fourier coefficientE+r is found in terms ofW+r and the Fourier coefficients
A±i andB±i . Provided a reasonable starting estimate is available, sets of equations similar to
equation (11) can often be solved by cyclic iterative methods in which the starting estimate
is progressivelyrelaxed to the solution. This has been described in more detail in an earlier
publication [16]. For instance, a sensible start is to set the coefficientsA±i andB±i equal to
zero so that

E+i = W+i E−i = W−i F+i = X+i . . . . (12)

These initial values forE±i andF±i may be used in equations similar to (11) to produce
estimates forA±i andB±i . These in turn can be used in equation (11) to produce improved
estimates forE±i andF±i . This iterative procedure is continued until all Fourier coefficients
are known to the desired accuracy. Once the Fourier coefficients have been found, the stress
components and hence the strains and displacements may be evaluated.

3. The Fourier-series method for linked elastic blocks

One of the primary limitations of the Fourier-series method is that the technique may only
treat a single rectangular elastic block with a limited range of boundary conditions. To
determine strain fields in device structures with complex geometries, such as strained over-
layers [10] or buried strained layers, it is necessary to extend the Fourier-series method to
link rectangular elastic blocks. This ability would greatly increase the range of structures
accessible to the technique. For example, the strained overlayer, shown in figure 2, can be
modelled as four distinct, but linked, elastic blocks with appropriate boundary and interface
conditions. There exists continuity of normal and shear stress, normal and shear strain,
and displacement for any surface through a continuous elastic medium (across BI or EH in
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Figure 2. A strained overlayer can be modelled using several elastic blocks linked by appropriate
interface conditions. The surface ABCDEFGHIJ is stress free, stress and displacement are
continuous across BI and EH, but across BE the stress is continuous and the displacement and
strain are discontinuous.

Figure 3. By using appropriate boundary conditions, two elastic blocks can be linked to form
a single continuous elastic block.

figure 2 for instance). There may, however, be a discontinuity of strain and displacement
across certain interfaces (across BE in figure 2 for instance), but the normal and shear stress
are continuous across all interfaces in the material.

The first step is to calculate the strain state of asingle rectangular block with either
stress or displacement as specified boundary conditions. This involves taking the form for
the stress function, as given by equation (3), finding expressions for the displacements at
the boundary and equating these to the displacement boundary conditions in the same way
as for stress described in the previous section. The analysis then proceeds in the manner
described in section 2. First the stress components are determined from the stress function
and the strain components are determined from the Hooke’s laws assuming plane strain
conditions. The displacements at the boundaryx = +`, for example, are then obtained
from the strains by

u(l, y) = u(0, 0)+
∫ l

0
εxx(x

′, 0) dx ′ +
∫ y

0
εxy(l, y

′) dy ′

v(l, y) = v(0, 0)+
∫ l

0
εxy(x

′, 0) dx ′ +
∫ y

0
εyy(l, y

′) dy ′

where u and v are the displacements in thex and y directions, respectively, and the
displacements at the origin of the local coordinates for this rectangle,u(0, 0) andv(0, 0),
may be taken with respect to the centre of mass of the structure as a whole. For example,
u(l, y) is given by
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u(l, y) = u(0, 0)+ 1+ ν
E

{ ∞∑
i=1

B±i
α′i

[(1− ν)h′±′′i (0)+ α′2i νh
′±
i (0)]

+
∞∑
i=1

D±i
α′i

[(1− ν)i ′±′′i (0)+ α′2i νi
′±
i (0)]

−
∞∑
i=0

E±i

[
β2
i (1− ν)

∫ l

0
j±i (x) dx + ν

∫ l

0
j±
′′

i (x) dx

]
−
∞∑
i=0

G±i

[
β2
i (1− ν)

∫ l

0
k±i (x) dx + ν

∫ l

0
k±
′′

i (x) dx

]
+
∞∑
i=0

G+i
βi
(1− cosβiy)− H

+
i

β ′i
sinβ ′iy

}
. (13)

(a)

(b)

Figure 4. (a) The TEM sample studied by Harveyet al [7] and (b) the TEM sample studied
by Chou [33].

These displacement relations can be used in the same way as equation (5) to generate
a set of iteration equations relating the Fourier coefficients of the stress function, thereby
allowing the strain field within a single rectangular elastic block with displacements specified
as boundary conditions to be solved.

When solving for the strain distributions of two linked blocks, the boundary conditions
are not knowna priori at the interface. Instead the stress components and displacements
at the interface of one block must equal those at the interface calculated from the stress
function of the adjacent block. For example, for the two blocks shown in figure 3, the stress
components and displacements at the right side of block (n, m) must be equal to those at
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Figure 5. Geometry of the TEM sample, shown in figure 4(b), used in the strain calculation
showing the boundary stresses used to calculate the strain relaxation.

the left side of block (n, m+1). Therefore, for example, the continuity of the normal stress
across the interface will yield

σxx(n,m, ln,m) = σxx(n,m+ 1,−ln,m+1) (14)

where the subscripts onl indicate the block to which the dimension applies. Similar
expressions apply for the shear stress and displacements. Thus, if the stress components
and the displacements have been calculated for block (n, m) based on a set of known or
estimated boundary conditions, the stress components and the displacements at the boundary
with block (n, m+ 1) can be used as the first estimate of the boundary conditions (coupled
with known or estimated boundary conditions on the remaining faces for block (n, m+ 1).
This technique, therefore, generates the stress at the interfaces without prior specification
through fixed boundary conditions. This requires choosing Fourier frequencies (1) from
table 1, because other choices result in iteration equations which are simplified to the extent
that the stresses must be specified at the outset. With this proviso, it is possible, in principle,
to use the Fourier-series method for more complex geometries.

4. Results

A TEM sample containing strained layers produces a different contrast pattern to a sample
which is unstrained. The relaxation of the strain at a free surface causes bending of the
atomic planes and this is detected by the curvature of thickness fringes [6–8]. The curvature
of the thickness fringes is extremely sensitive to the magnitude of the strain relaxation
and hence the bulk strain in strained-layer structures can be measured to high accuracy.
These techniques are only useful, however, if accurate theoretical predictions for the strain
relaxation are available.

One common sample geometry is the 90◦-wedge sample with the normal to the plane
of the strain layer running parallel to both surfaces [7], as shown in figure 4(a). The strain
relaxation can be calculated using a three-dimensional analysis with boundary conditions
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(a) (b)

(c) (d)

Figure 6. Contour plots of the stresses and strains of the TEM sample shown in figure 4. The
dark shaded region shows the position of the strained layer. The absolute strain contours are
labelled in units of 10−3 and the stress contours are labelled in units of 107 N m−2. (a) Normal
stress (σxx ), (b) in-plane stress (1√

2
(σxx + σyy)), (c) shear strain (εxy ) and (d) in-plane strain

( 1√
2
(εxx + εyy)). The distance scale is arbitrary.

consisting of stress components normal to the surfaces. A three-dimensional Fourier-series
method has been developed for this purpose [17].

An alternative geometry has been investigated by Chou [33] for InGaAs strained layers
in GaAs barriers. Here the normal to the plane of the strained layer is at 45◦ to both
free surfaces of the sample, as shown in figure 4(b). If the wedge is thick enough, the
strain relaxation for this sample can be calculated assuming plane strain conditions and is
accessible to the theory outlined in section 2 for a single rectangular block. To establish
a free surface, it is necessary that the stressrelaxation cancels the in-plane stress of the
layer at the surface. The stress relaxation is, therefore, calculated by applying normal and
shear stress components at the surface as indicated in figure 5, where, for this calculation,



Strain distributions in two dimensions 4519

Figure 7. The relaxation of the in-plane strain
along the centre of the layer for the TEM sample
shown in figure 4(b).

z is equal to 10.6 andw is equal to 14.14. Note that theactual stress in the structure is
obtained by taking the stressrelaxation and adding the state of stress prior to relaxation.

Calculations of stress relaxation for the sample illustrated in figure 5 were performed
using 500 Fourier frequencies and the strain fields were determined using the elastic
constants for GaAs withE = 8.5× 1010 N m−2 and ν = 0.312 [34]. The misfit strain
is taken to be 1% and results for other misfit strains can be scaled accordingly. It is a
reasonable approximation to use the elastic constants of the barrier material for the layer
because, as well as being known only approximately, the elastic constants for the III–V
materials are roughly proportional to the lattice constant. The isotropic approximation of
the Fourier series method is appropriate when the anisotropy factor(c11− c12)/2c44 is close
to 1. For GaAs, this value is about 0.55, but earlier work suggests that the anisotropy of
elastic constants makes only a small difference to the overall strain distribution [15].

The results for stress relaxation are shown in figure 6 as contour plots. The amount of
relaxation of the in-plane strain is large at points A and B. This is expected because the
layer is constrained by less material on the side AB than on the side CD. The relaxation
of the in-plane strain along the centre of the layer is plotted as a function of distance in
figure 7. As expected the strain is almost fully relaxed at the free surface. The strain at the
centre of the layer has relaxed by about 0.1% and so the actual strain is about 0.9% in this
region.

The in-plane stress is found to be approximately proportional to 1/r, wherer is the
distance from the free surface. A 1/r dependence was noted by Faux [16] for a strained
layer at right angles to the surface. For the TEM sample studied here, the stresses imposed
at the two surfaces interact and so one would not expect an exact 1/r dependence.

5. Conclusion

The Fourier-series method for calculating the strain field in a two-dimensional rectangular
isotropic elastic block is extended to include boundary conditions specified in terms of both
normal and shear stresses. This method can be used to calculate quickly, to any desired
accuracy, the state of stress and strain at any point within the block. In section 4, the
method is used to calculate the strain field of a TEM sample. It is found that, for a strained
layer close to the corner of a rectangular block and at 45◦ to the free surfaces, the in-plane
stress is approximately proportional to 1/r, wherer is the distance from the free surface.
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This strain field could be superposed to predict TEM contrast patterns and could, therefore,
be combined with TEM measurements of thickness fringes to measure directly the misfit
strain.

Finally, the further extension of the Fourier-series method to calculate the strain field
due to buried inclusions or strained overlayers is presented. Separate rectangular blocks
are linked to construct the more complex geometries, hence a Fourier-series method that
allows displacements to be specified as boundary conditions is required and this theory is
presented in section 3. This theory allows, in principle, calculations of stress and strain to
be performed using the Fourier-series method in two-dimensional structures composed of
rectangular elements. The increased mathematical complexity of the theory may, however,
restrict its application to simple cases.
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